Trascendencia del microquimerismo fetal en las enfermedades autoinmunes

Luis Felipe Arias-Ruiz, Javier Contreras-Cárdenas, Pablo Mondragón-Ratkovich, María Luisa Ramos-Ibarra, Olivia Torres-Bugarin

Resumen

Con frecuencia durante el embarazo ocurre exportación de células, algunas del sistema inmune, tanto de la madre al feto como del feto a la madre. Éstas pueden ser células madre que al cruzar la barrera placentaria e ingresar al cuerpo del anfitrión pueden instalarse en distintos órganos y persistir por décadas. Así, un individuo podría poseer una pequeña población de células y por ende ácidos nucleicos de otro genéticamente diferente. A este fenómeno se le conoce como microquimerismo (MC). Las consecuencias del MC no están claras, pero se plantea que podría tener efectos benéficos, dañinos o podría ser que no tenga efecto alguno, inclusive pudiera ser que estas tres hipótesis no sean mutuamente excluyentes, todo según las circunstancias. Por otro lado, las mujeres en edad fértil tienen mayor riesgo que los hombres de desarrollar alguna enfermedad autoinmune, y este riesgo es significativamente mayor en el primer año posterior al parto. Existen evidencias de que el MC puede estar asociado al desarrollo de algunas enfermedades autoinmunes, debido a que las células T inmaduras quiméricas dentro de los tejidos del anfitrión podrían activarse y liberar citocinas inflamatorias y quimiocinas que están involucradas en los procesos de autoinmunidad. El objetivo de este trabajo es mostrar las evidencias que apoyan la teoría de que el MC está relacionado con este grupo de enfermedades como el síndrome de Sjögren, esclerosis sistémica, lupus eritematoso sistémico y artritis reumatoide.

Texto completo:

PDF EPUB HTML

Referencias

Hesíodo. La Teogonía. Descendientes de Ceto y Forcis. Siglo VII a.C. Alejandría. Libros de dominio público. pp 4. https://www.elejandria.com/libro/la-teogonia/ hesiodo/486.

Andrikovics H, Őrfi Z, Meggyesi N, Bors A, Varga L, Kövy P, et al. Current Trends in Applications of Circulatory Microchimerism Detection in Transplantation. Int J Mol Sci. 2019 Sep;20(18):4450. doi:10.3390/ijms20184450

Nelson JL. The otherness of self: microchimerism in health and disease. Trends Immunol. 2012 Aug;33(8):421-7. doi: 10.1016/j.it.2012.03.002.

Bianchi D, Zickwolf G, Weil G, Sylvester S, DeMaria M. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci. 1996 Jan;93(2):705-8 doi:10.1073/pnas.93.2.705

Dziegiel MH, Hansen MH, Haedersdal S, Barrett AN, Rieneck K, Main KM, et al. Blood Chimerism in Dizygotic Monochorionic Twins During 5 Years Observation. Am J Transplant. 2017 Oct;17(10):2728-32. doi: 10.1111/ajt.14318

Molès JP, Tuaillon E, Kankasa C, Bedin Anne-Sophie, Nagot N, Marchant A, et al. Breastmilk cell trafficking induces microchimerism mediated immune system maturation in the infant. Pediatr Allergy Inmunol. 2018 Mar;29(2):133-43. doi: 10.1111/pai.12841.

Peterson SE, Nelson JL, Gadi VK, Gammill HS. Fetal cellular microchimerism in miscarriage and pregnancy termination. Chimerism. 2013 Oct;4(4):136-8. doi: 10.4161/ chim.24915.

Gammil H, Adams K, M. Ayedelotte T, Lucas J, M. Leisenring W, C. Lambert N, Lee J. Pregnancy, Microchimerism, and the Maternal Grandmother.

PLoS One. 2011 Aug;6(8): e24101. doi:10.1371/journal. pone.0024101

Brunker PAR. Chimerism in transfusion medicine: The grandmother effect revisited. Chimerism. 2013 Nov;4(4):119-25. doi: 10.4161/chim.26912.

Kinder JM, Stelzer IA, Arck PC, Way SS. Immunological implications of pregnancy-induced microchimerism. Nat Rev Immunol. 2017 Aug;17(8):483-94. doi: 10.1038/ nri.2017.38.

Kliman D, Castellano-Gonzalez G, Withers B, Street J, Tegg E, Mirochnik O, Lai J, Clancy L, Gottlieb D, Blyth E. Ultra-Sensitive Droplet Digital PCR for the Assessment of Microchimerism in Cellular Therapies. Biol Blood Marrow Transplant. 2018 May;24(5):1069-78.

doi: 10.1016/j.bbmt.2017.12.802.

Shrivastava S, Naik R, Suryawanshi H, Gupta N. Microchimerism: A new concept. J Oral Maxillofac Pathol. 2019 May-Aug;23(2):311. doi: 10.4103/jomfp.JOMFP_85_17

Boddy AM, Fortunato A, Wilson Sayres M, Aktipis A. Fetal microchimerism and maternal health: a review and evolutionary analysis of cooperation and conflict beyond the womb. Bioessays. 2015 Oct;37(10):1106-18. doi: 10.1002/bies.201500059.

Kinder JM, Jiang TT, Ertelt JM, Xin L, Strong BS, Shaaban AF, et al. Cross-generational reproductive fitness enforced by microchimeric maternal cell. Cell. 2015 Jul;162(3):505-15. doi: 10.1016/j. cell2015.07.006.

Yan Z, Lambert NC, Guthrie KA, Porter AJ, Loubiere LS, Madeleine MM, Stevens AM, Hermes HM, Nelson JL. Male microchimerism in women without sons: quantitative assessment and correlation with pregnancy history. Am J Med. 2005 Aug;118(8):899-06. doi: 10.1016/j. amjmed.2005.03.037

Apaza J, Huamán M. Flujo sanguíneo uterino en el embarazo. Rev Peru Ginecol Obstet. 2015 Jun;61(2):127-34. http://www.scielo.org.pe/scielo.php?script=sci_ arttext&pid=S2304 51322015000200006&lng=es&nrm =iso. ISSN 2304-5132.

Stevens AM. Maternal microchimerism in health and disease. Best Pract Res Clin Obstet Gynecol. 2016 Feb;31: 121-30. doi: https://doi.org/10.1016/j. bpobgyn.2015.08.005

Jonsson AM, Uzunel M, Götherström C, Papadogiannakis N, Westgren M. Maternal microchimerism in human fetal tissues. Am J Obstet Gynecol. 2008 Mar;198(3): 325.e1-6. doi: 10.1016/j.ajog.2007.09.047

Dawe S, Tan W, Xiao Z-C. Cell Migration from Baby to Mother. Cell Adh Migr. 2007 Jan-Mar;1(1):19-27. PMID: 19262088.

Mahmood U, O’Donoghue K. Microchimeric fetal cells play a role in maternal wound healing after pregnancy. Chimerism. 2014 Apr;5(2):40-52. doi:10.4161/chim.28746.

Zeng XX, Tan KH, Yeo A, Sasajala P, Tan X, Xiao ZC, et al. Pregnancyassociated progenitor cells differentiate and mature into neurons in the maternal brain. Stem Cells Dev. 2010 Dec;19:1819-30. doi: 10.1089/scd.2010.0046.

Bayes-Genis A, Bellosillo B, de la Calle O, Salido M, Roura S, Ristol FS, et al. Cinca J. Identification of male cardiomyocytes of extracardiac origin in the hearts of women with male progeny: male fetal cell microchimerism of the heart. J Heart Lung Transplant. 2005 Dec;24(12):2179-83. doi: 10.1016/j. healun.2005.06.003.

O’Donoghe K. Fetal microchimerism and maternal health during and after pregnancy. Obstet Med. 2008 Dec;1(2):56-64. doi: 10.1258/om.2008.080008

Nassar D, Droitcourt C, Mathieu-d’Argent E, Kim MJ Khosrotehrani K, Aractingi S. Fetal progenitor cells naturally transferred through pregnancy participate in inflammation and angiogenesis during wound healing. FASEB J. 2012 Jan; 26:149-57. doi: 10.1096/fj.11-180695.

Nemescu D, Ursu RG, Nemescu ER, Negura L. Heterogeneous Distribution of Fetal Microchimerism in Local Breast Cancer Environment. PLoS One. 2016 Jan;11(1):e0147675. doi: 10.1371/journal. pone.0147675.

Gadi VK, Malone KE, Guthrie KA, Porter PL, Nelson JL. Case-Control Study of Fetal Microchimerism and Breast Cancer. PLoS One. 2008 Mar;3(3): e1706. doi: 10.1371/journal.pone.0001706.

Cirello V, Rizzo R, Crippa M, Campi I, Bortolotti D, Bolzani S, et al. Fetal cell microchimerism: a protective role in autoimmune thyroid diseases. Eur J Endocrinol. 2015 Jul;173(1):111-8. doi: 10.1530/EJE-15-0028.

Trees L, Vandewoestyne M, Hussain S, Van Nieuwerburgh F, Poppe K, Velkeniers B, et al. Fetal Microchimeric Cells in Blood of Women with an Autoimmune Thyroid Disease. PLoS One 2011 Dec;6(12):e29646. doi.org/10.1371/journal.pone.0029646.

Jafarinia M, Amoon M, Javid A, Vakili S, Sadeghi E, Azadi D, et al. Male Microchimerism in Peripheral Blood From Women With Multiple Sclerosis in Isfahan Province. Int J Immunogenet. 2020 Apr;47(2):175-9. doi: 10.1111/iji.12465.

Jeanty C, Derderian SC, Mackenzie TC. Maternal-fetal cellular trafficking: clinical implications and consequences. Curr Opin Pediatr. 2014 Jan;26(3):377-82. doi: https://doi.org/10.1097/MOP.0000000000000087

Cristofaro JD, Karlmark KR, Kanaan SB, Azzouz DF, Haddad ME, Hubert L, et al. Soluble HLA-G Expression Inversely Correlates With Fetal Microchimerism Levels in Peripheral Blood From Women With Scleroderma. Front Immunol. 2018 Aug;9:1685. https://doi.org/10.3389/FIMMU.2018.01685

Fathi-Bitaraf S, Nazarinia M, Esmaeilzade E, Kamali S E, Khodamoradi Z. The effect of microchimerism on frequency and severity of organ involvement in Iranian scleroderma patients. Rheumatol Res. 2019; 4(1):17-22. doi: 10.22631/rr.2019.69997.1061

da Silva-Florim GM, Caldas HC, Pavarino EC, Bertollo EM, Fernandes IM, Abbud-Filho M. Variables associated to fetal microchimerism in systemic patients. Clin Rheumatol. 2016 Jan;35(1):107-11. doi:10.1007/s10067015-3122-8.

Cruz GI, Shao X, Quach H, Ho KA, Sterba K, Noble JA, et al. Increased risk of rheumatoid arthritis among mothers with children who carry DRB1 risk-associated alleles. Ann Rheum Dis. 2017; 76(8): 1405-1410. Ann Rheum Dis. 2017 Aug;76(8):1405-10. doi: 10.1136/ annrheumdis-2016-210662.

Kanaan SB, Sensoy O, Yan Z, Gadi VK, Richardson ML, Nelson JL. Immunogenicity of a rheumatoid arthritis protective sequence when acquired through microchimerism. Proc Natl Acad Sci. 2019 Sep;116(39):19600-8. doi: 10.1073/ pnas.1904779116.

Brandt JE, Priori R, Valesini G, Fairweather D. Sex differences in Sjögren’s syndrome: a comprehensive review of immune mechanisms. Biol Sex Differ. 2015 Nov;6:19. doi: 10.1186/s13293-015-0037-7.

Kuroki M, Okayama A, Nakamura S, Sasaki T, Murai K, Shiba R, Shinohara M, Tsubouchi H. Detection of maternal-fetal microchimerism in the inflammatory lesions of patients with Sjögren’s syndrome. Ann Rheum Dis. 2002 Dec;61(12):1041-6. doi: 10.1136/ard.61.12.1041

Willer CJ, Herrera BM, Morrison KM, Sadovnick AD, Ebers GC. Association between microchimerism and multiple sclerosis in Canadian twins. J Neuroimmunol. 2006 Oct;179(1-2):145-51. doi: 10.1016/j.jneuroim.2006.06.011.

Snethen H, Ye J, Gillespie KM, Scolding NJ. Maternal micro-chimeric cells in the multiple sclerosis brain. Mult Scler Relat Disord. 2020 May;40:101925. doi.org/10.1016/j.msard.2020.101925

Terzi E, Bulut B, Türsen Ü, Kaya Tİ, Türsen B, Erdal ME, et al. Microchimerism in alopecia areata. Int J Dermatol. 2015 Nov;54(11):e448-52. doi: 10.1111/ijd.12795.

Alp R, Guney AU, Tursen U, Kaya T, Tursen B, Erdal ME. Microchimerism in Behçet’s disease. Int J Dermatol. 2014 Jul;53(7):832-7. doi: 10.1111/j.13654632.2012.05804.x

Romão VC, Talarico R, Scirè CA, Vieira A, Alexander T, Baldini C, et al. Sjögren’s syndrome: state of the art on clinical practice guidelines. RMD Open. 2018 Oct;4 (Suppl 1): e000789. doi:10.1136/rmdopen-2018-000789.

Nair JJ, Singh TP. Sjögren’s syndrome: Review of the aethiology, Pathology & Potential therapeutic interventions. J Clin Exp Dent. 2017 Apr;9(4):e584-9. doi: https://doi.org/10.4317/jced.53605.

Endo Y, Negishi I, Ishikawa O. Possible contribution of microchimerism to the pathogenesis of Sjögren’s syndrome. Rheumatol (Oxford). 2002 May;41(5):490-5. doi:10.1093/rheumatology/41.5.490.

Carlucci F, Pirori R, Valesini G. Microchimerism in Sjögren syndrome. Rheumatol. 2003 Mar;42(3):486-7. doi: 10.1093/rheumatology/keg105

Giacomelli R, Matucci-Cerinic M, Bombardieri S. Microchimerism in Sjögren’s syndrome. Ann Rheumatol Dis. 2002 Dec;61(12):1039-40. doi:10.1136%2Fard.61.12.1039.

Lambert NC, Evans PC, Hashizumi TL, Maloney S, Gooley T, Furst DE, Nelson JL. Cutting Edge: Persistent fetal microchimerism in T Lymphocytes is associated with HLA-DQA1*0501: Implicactions in autoimmunity. J Immunol. 2000 Jan;164(11):5545–5548. doi: 10.4049/jimmunol.164.11.5545.

Gao CY, Yao Y, Li L, Yang SH, Chu H, Tsuneyama K et al. Tissue-Resident Memory CD8+ T Cells Acting as Mediators of Salivary Gland Damage in a Murine Model of Sjögren’s Syndrome. Arthritis Rheumatol. 2019 Jan;71(1):121-32. doi:10.1002/ art.40676.

Groom J, Kalled SL, Cutler AH, Olson C, Woodcock SA, Schneider P et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome. J Clin Invest. 2002 Jan;109(1):59–68. doi: 10.1172/JCI14121.

Battern M, Groom J, Cachero TG, Qian F, Schneider P, Tschopp J. et al. BAFF mediates survival of perypheral immature B lymphocytes. J Exp Med. 2000 Nov;192(10):1453-66). doi:10.1084/ jem.192.10.1453.

Nelson JL. Maternal-fetal immunology and autoimmune diseases some autoimmune disease auto-alloimmune or autoimmune? Arthritis Rheum. 1996 Jan;39(2):191–194. doi: 10.1002/art.1780390203.

Ysrraelit MC, Fiol MP, Peña FV, Vanotti S, Terrasa SA, Tran VT, et al. Adaptation and validation of a Spanish version of the treatment burden questionnaire in patients with multiple sclerosis. BMC Neurol. 2019 Aug;19(1):2009 doi: 10.1186/s12883-019-1441-0.

Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017 Oct;390(10103):1685-1699. doi:10.1016/S01406736(17)30933-9.

Nelson JL, Furst DE, Maloney, Gooley T, Evans PC, Smith A, et al. Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet. 1998 Feb;351(9102):559-62. doi: 10.1016/S0140-6736(97)08357-8

Arlett CM, Smith JB, Jimenez SA. Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med. 1998 Apr;338(17):1186-91. doi: 10.1056/NEJM199804233381704.

Nelson JL. Microchimerism and Pathogenesis of systemic sclerosis. Curr Opin Rheumatol. 1998 Nov;10(6):564-71. doi:10.1097/00002281-19981100000010.

Hadasik K, Bergler-Czop B, Brzzeińska-Wcislo L. Fetal microchimerism in a pregnant woman and risk of autoimmune disease. Dermatol Rev/Przegl Dermatol. 2018; 105:307-13. doi:10.5114/dr.2018.75586.

Cutolo M, Soldano S, Smith V. Pathophysiology of systemic sclerosis: current understanding and new insights. Expert Rev Clin Immunol. 2019 Jul;15(7):753-64. doi: 10.1080/1744666X.2019.1614915.

Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018 Apr;6(15). doi:10.1038/s41413-018-0016-9.

Malemud CJ. Defective T-Cell Apoptosis and T-Regulatory Cell Dysfunction in Rheumatoid Arthritis. Cells. 2018 Nov;7(12):223. doi:10.3390%2Fcells7120223.

Cruz GI, Shao X, Quach H, Quach D, Ho KA, Sterba K. et al. Mother-child histocompatibility and risk of rheumatoid arthritis and systemic lupus erythematosus among mothers. Genes Immun. 2019 Jan;21:27-36. doi:10.1038/s41435-018-0055-7

Chan WFN, Atkins CJ, Naysmith D, van der Westhuizen N, Woo J, Nelson JL. Microchimerism in the rheumatoid nodules of rheumatoid arthritis patients. Arthritis Reum. 2012 Feb;64(2):330-8. doi:10.1002/art.33358

Hromadnikova I, Zlacka D, Hien Nguyen TT, Sedlackova L, Zejskova L, Sosna A. Fetal cells of mesenchymal origin in cultures derived from synovial tissue and skin of patients with rheumatoid arthritis. Joint Bone Spine. 2008 Oct;75(5):563-6. doi:10.1016/j. jbspin.2008.02.004.

Nagafuchi Y, Shoda H, Fujio K. Immune profiling and precision medicine in systemic lupus erythematosus. Cells. 2019 Feb;8(2):140. doi:10.3390/ cells8020140.

Damrongpipatkul U, Oranratanachai K, Kasitanon N, Wi Louthrenoo Wittiplakorn. Clinical features, outcome, and associated factors for posterior reversible encephalopathy in Thai patients with systemic lupus erythematosus: a case-control study. Clin Rheumatol. 2018 Mar;37(3):691-702.doi: 10.1007/s10067017-3892-2.

Mosca M, Curcio M, Lapi S, Valentini G, D’Angelo S, Rizzo G, Bombardieri S. Correlations of Y chromosome microchimerism with disease activity in patients with SLE: analysis of preliminary data. Ann Rheum Dis. 2003 Jul;62(7):651-4. doi: 10.1136%2Fard.62.7.651.

Stevens AM. Microchimeric cells in systemic lupus erythematosus: targets or innocent bystanders? Lupus. 2006 Nov;15(11): 820-6. doi:10.1177%2F0961203306070068.

Johnson KL, McAlidon TE, Mulcahy E, Biachi DW. Microchimerism in a female patient with systemic lupus erythematosus. Arthritis Rheum. 2001 Sep;44(9):2107-11. doi: 10.1002/1529-0131(200109)44:9<2107::AID-ART361>3.0.CO;2-9.

Enlaces refback

  • No hay ningún enlace refback.