Influencia del cambio climático sobre la transmisión de Leishmaniasis en Latinoamérica y el estatus de investigación en México

Oscar Fernando Mikery-Pacheco, David Alejandro Moo-Llanes, Eduardo Alfonso Rebollar-Téllez, Alfredo Castillo-Vera

Resumen

El impacto del cambio climático en los humanos es cada vez mayor, irónicamente debido a factores antropogénicos como la globalización. En el caso de Enfermedades Transmitidas por Vectores como las Leishmaniasis, el Cambio Climático (CC) puede afectar su epidemiología al cambiar la biología y ecología de sus vectores, reservorios y patógenos. Se realizó una revisión descriptiva de la literatura, con el objetivo de proporcionar información disponible sobre el efecto del CC en la incidencia y distribución estacional y espacial de la Leishmaniasis, el patógeno y sus vectores, y cómo puede impactar en la aparición y resurgimiento de esta enfermedad en los países de América Latina, destacando la problemática en México. Se buscó información de 2002 a 2021, en bases de datos de artículos científicos. Se encontraron 48 referencias, incluyendo seis artículos de revisión. El gran potencial de las Leishmaniasis para ampliar sus rangos de distribución geográfica, la variación de sus ciclos de transmisión, el aumento sustancial del número de casos y el aumento de la inversión para la exploración de alternativas de su tratamiento y control, ha provocado que las Leishmaniasis sean categorizadas como enfermedades emergentes.

 

Palabras clave: Leishmania, flebotominos, temperatura, ENOS, distribución, Cambio Climático.

Texto completo:

PDF HTML EPUB

Referencias

Organización Mundial de la Salud. Información sobre las enfermedades transmitidas por vectores. Campañas Mundiales de Salud Pública de La OMS. 2015. http://www.who.int/campaigns/world-health-day/2014/vector-borne-diseases/es/ (Accessed on May, 2016)

Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PloS One. 2012; 7: e35671.

Pan American Health Organization. Leishmaniases: Epidemiological report of the Americas. Report Leishmaniases Nº 1. 2013; http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&gid=21608&Itemid=. Acceced July 2016.

Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLOS Negl Trop Dis. 2016; 10, e0004349.

World Health Organization. The global health observatory: Explore a world of health data. 2022. https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/leishmaniasis (accessed on January, 2022).

Pigott DM, Bhatt S, Golding N, Duda KA, Battle KE, Brady OJ, et al. Global distribution maps of the leishmaniases. eLife. 2014; 3: 1-21.

World Health Organization. Leishmaniasis. 2015. http://www.who.int/leishmaniasis/en/ (accessed on December, 2015)

Rueda LM, Patel KJ, Axtell RC, Stinner RE. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol. 1990; 27: 892-898.

Chan M, Johansson MA. The incubation periods of dengue viruses. PloS One. 2012; 7; e50972.

Carrington LB, Armijos MV, Lambrechts L, Soctt TW. Fluctuation at a low mean temperature accelerate Dengue virus transmission by Aedes aegypti. PLoS Negl Trop Dis. 2013; 7: e2190.

Barker CM, Reisen WK. Epidemiology of vector-borne diseases. In: Mullen GR, Durden LA (Eds.), Med Vet Entomol (pp. 33-49). 2019.

IPCC. Resumen para responsables de políticas. In: Field CB, Barros VR, Dokken DJ, et al. (Eds.), Cambio climático 2014: Impactos, adaptación y vulnerabilidad. Contribución del Grupo de trabajo II al Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático (p. 34). 2014. Organización Meteorológica Mundial, Ginebra, Suiza.

Cardenas R, Sandoval CM, Rodríguez-Morales AJ, Franco-Paredes C. Impact of climate variability in the ocurrence of leishmaniasis in Northeastern Colombia. Am J Trop Med Hyg. 2006; 75: 273-277.

IPCC. Fourth Assessment Report (AR4). In: Solomon S, Qin D, Manning M, et al. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (p. 996). 2007. Cambridge University Press, Cambridge.

IPCC. Cambio climático 2013. Bases físicas. Resumen para responsables de políticas. (p. 34). 2013.

Chaves LF, Pascual M. Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PLoS Medicine. 2006; 3: 1320-1328.

Moo-Llanes DA. Nicho ecológico actual y futuro de la Leishmaniasis (Kinetoplastida: Trypanosomatidae) en la región Neotropical. Rev Biol Trop. 2016; 64: 1237-1245.

Capotondi A, Wittenberg AT, Newman M. Understanding ENSO diversity. Bull Am Meteor Soc. 2015; 96: 921-938.

IPCC. Assessment reports. In: Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. 2001. [on line] http://www.ipcc.ch/ipccreports/tar/wg2/index.php?idp=45 (accessed on May, 2016).

Confalonieri UEC, Dutra FRLS. Climate Change and Vector Borne Diseases in Latin America. In: Malik A, Grohmann E, Akhtar R (Eds.), Environmental Deterioration and Human Health: Natural and anthropogenic determinants (pp. 315-324). 2014. Springer Netherlands.

Latif M, Keenlyside NS. El Niño/Southern Oscillation response to global warming. PNAS. 2009; 106: 20578-20583.

Cardenas R, Sandoval CM, Rodriguez-Morales AJ, Vivas P. Zoonoses and climate variability: the example of leishmaniasis in Southern departments of Colombia. Ann N Y Acad Sci. 2008; 1149: 326-330.

Cabaniel G, Rada L, Blanco JJ, Rodríguez-Morales AJ, Escalera JP. Impacto de los eventos de El Niño Southern Oscillation (ENSO) sobre la leishmaniosis cutánea en Sucre, Venezuela, a través del uso de información satelital, 1994-2003. Rev Peru Med Exp Salud Publica. 2005; 22: 32-38.

Chaves LF, Calzada JE, Valderrama A, Saldaña A. Cutaneous leishmaniasis and sand fly fluctuations are associated with El Niño in Panamá. PLoS Negl Trop Dis. 2014; 8: e3210.

Yamada K, Valderrama A, Gottdenker N, Cerezo L, Minakawa N, Saldaña A, et al. Macroecological patterns of american cutaneous leishmaniasis transmission across the health areas of Panamá (1980–2012). Parasite Epidemiol Control. 2016; 1: 42-55.

de Souza FAR, Andreoli RV, Kayano TM, Carvalho AL American cutaneous leishmaniasis cases in the Metropolitan Region of Manaus, Brazil: association with climate variables over time. Geospat Health. 2015; 10: 314-321.

Roger A, Nacher M, Hanf M, Drogoul AS, Adenis A, Basurko C, et al. Climate and leishmaniasis in French Guiana. Am J Trop Med Hyg. 2013; 89: 564-569.

Gómez C, Rodríguez-Morales AJ, Franco-Paredes C. Impact of climate variability in the ocurrence of leishmaniasis in Bolivia. Am J Trop Med Hyg. 2006; 75: 42.

Aparicio M, Ortiz P. Vulnerabilidad y adaptacion de la salud humana ante los efectos del cambio climático en Bolivia. MDS-VMARNDF, PNCC PNUD, OPS/OMS-GEF. 2000.

Salomón OD, Quintana MG, Mastrángelo AV, Fernández MS Leishmaniasis and climate change—case study: Argentina. J Trop Med. 2012: 1–11.

Franke CR, Ziller M, Staubach C, Latif M. Impact of the El Niño/Southern Oscillation on Visceral Leishmaniasis, Brazil. Emerg Infect Dis. 2002; 8: 914-917.

Kuhn KG. Global warming and leishmaniasis in Italy. Bull Trop Med Int Health. 1999; 7: 1-2.

Bounoua L, Kahime K, Houti L, Blakey T, Ebi KL, Zhang P, et al. Linking climate to incidence of zoonotic cutaneous leishmaniasis (L. Major) in Pre-Saharan North Africa. Int J Environ Res Public Health. 2013; 10: 3172-3191.

Hlavacova J, Votypka J, Volf P. The effect of temperature on Leishmania (Kinetoplastida: Trypanosomatidae) development in sand flies. J Med Entomol. 2013; 50: 955-958.

Moo-Llanes DA, Arque-Chunga W, Carmona-Castro O, Yañez-Arenas CA, Yañez-Trujillano H, Cheverría-Pacheco L, et al. Shifts in the ecological niche of Lutzomyia peruensis under climate change scenarios in Perú. Med Vet Entomol. 2017; 31: 123-131.

Ximenes MFFM, Castellón EG, Souza MF, Menezes AAL, Queiroz JW, Silva VPM, et al. Effect of abiotic factors on seasonal population dynamics of Lutzomyia longipalpis (Diptera: Psychodidae) in Northeastern Brazil. J Med Entomol. 2006; 43: 990-995.

González C, Wang O, Strutz SE, González-Salazar C, Sánchez-Cordero V, Sarkar S. Climate change and risk of leishmaniasis in North America: predictions from ecological niche models of vector and reservoir species. PLoS Negl Trop Dis. 2010; 4: e585.

Moo-Llanes D, Ibarra-Cerdeña CN, Rebollar-Téllez EA, Ibáñez-Bernal S, González C, Ramsey JM. Current and future niche of North and Central American sand flies (Diptera: Psychodidae) in climate change scenarios. PLoS Negl Trop Dis. 2013; 7: e2421.

Rodriguez-Rojas JJ, Rodriguez-Moreno A, Berzunza-Cruz M, Gutierrez-Granados G, Becker I, Sanchez-Cordero V, et al. Ecology of phlebotominae sandflies and putative reservoirs hosts of leishmaniasis in a border area in Northeastern Mexico: implications for the risk of transmission of Leishmania mexicana in Mexico and the USA. Parasite. 2017; 24: 33.

Moo-Llanes DA, Pech-May A, Ibarra-Cerdeña CN, Rebollar-Téllez EA, Ramsey JM. Inferring distributional shifts from Pleistocene to future scenarios of epidemiologically important North and Central American sandflies (Diptera: Psychodidae). Med Vet Entomol. 2019; 33: 31-43.

Bates PA, Depaquit J, Galati EAB, Kamhawi S, Maroli M, McDowell MA, et al. Recent advances in phlebotomine sand fly research related to leishmaniasis control. Parasit Vectors. 2015; 8: 131.

Tabachnick WJ. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence. Int J Environ Res Public Health. 2013; 10: 249-277.

Ebrahimi S, Bordbar A, Parvizi P. Genetic dynamics in the sand fly (Diptera: Psychodidae) nuclear and mitochondrial genotypes: evidence for vector adaptation at the border of Iran with Iraq. Parasit Vectors. 2013; 9: 319.

Abad-Franch F, Monteiro FA. Biogeography and evolution of Amazonian triatomines (Heteroptera: Reduviidae): implications for Chagas disease surveillance in humid forest ecoregions. Mem Inst Oswaldo Cruz. 2007; 102: 57-69.

Jamison A, Tuttle E, Jensen R, Bierly G, Gonser R. Spatial ecology, landscapes, and the geography of vector-borne disease: A multi-disciplinary review. Appl Geogr. 2015; 63: 418-426.

Oliveira EF, Fernandes CES, Silva EA, Brazil RP, Oliveira AG. Climatic factors and population density of Lutzomyia longipalpis (Lutz & Neiva, 1912) in an urban endemic area of visceral leishmaniasis in midwest Brazil. J Vector Ecol. 2013; 38: 224-228.

Pérez J,Virgen A, Rojas JC, Rebollar-Téllez EA, Castillo A, Infante F, et al. Species composition and seasonal abundance of sandflies (Diptera: Psychodidae: Phlebotominae) in coffee agroecosystems. Mem Inst Oswaldo Cruz. 2014; 109: 80-86.

Guzman H, Tesh RB. Effects of temperature and diet on the growth and longevity of phlebotomine sand flies (Diptera: Psychodidae). Biomedica. 2000; 20: 190-199.

Lane RP. Geographic variation in Old World phlebotomine sandflies. In: Service MW (Ed.) Biosystematics of Haematophagous Insects (pp. 77-90). Clarendon Press, Oxford. 1988.

Feliciangeli MD, Rabinovich J. Abundance of Lutzomyia ovallesi but not Lu. gomezi (Diptera: Psychodidae) correlated with cutaneous leishmaniasis incidence in north-central Venezuela. Med Vet Entomol. 1998; 12: 121-131.

Salomón OD, Wilson ML, Munstermann LE, Travi BL. Spatial and temporal patterns of phlebotomine sand flies (Diptera: Psychodidae) in a cutaneous leishmaniasis focus in Northern Argentina. J Med Entomol. 2004; 41: 33-39.

González C, Paz A, Ferro C. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia. Acta Trop. 2014; 129: 83-90.

Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, et al. Ecological niches and geographic distributions. Monographs in Population Biology 49. Princeton University Press, New Jersey. 2011.

Quintana M, Salomón O, Guerra R, de Grosso ML, Fuenzalida A. Phlebotominae of epidemiological importance in cutaneous leishmaniasis in northwestern Argentina: risk maps and ecologic niche models. Med Vet Entomol. 2013; 27: 39-48.

Raxworthy CJ, Ingram CM, Rabibisoa N, Pearson RG. Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst Biol. 2007; 56: 907-923.

Crozier L, Dwyer G. Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. Am Nat. 167, 853-866.

Oshaghi MA, Ravasan NM, Javadian E, Rassi Y, Sadraei J, Enayati AA, et al. Application of predictive degree day model for field development of sandfly vectors of visceral leishmaniasis in northwest of Iran. J Vector Borne Dis. 2009; 46: 247-254.

Peterson AT, Shaw J. Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects. Int J Parasitol. 2003; 33: 919-931.

Carvalho BM, Rangel EF, Ready PD, Vale MM. Ecological niche modelling predicts southward expansion of Lutzomyia (Nyssomyia) flaviscutellata (Diptera: Psychodidae: Phlebotominae), vector of Leishmania (Leishmania) amazonensis in South America, under climate change. PLoS ONE. 2015; 10: e0143282.

Peterson AT, Pereira RS, Neves VFC. Using epidemiological survey data to infer geographic distributions of leishmaniasis vector species. Rev Soc Bras Med Trop. 2004; 37: 10-14.

Cai W, Wang G, Santoso A, McPhaden MJ, Wu L, Jin F-F, et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Clim Change. 2014: 4: 111-116.

Galvis-Ovallos F, Espinosa Y, Gutiérrez-Marín R, Fernández N, Rodriguez-Morales A, Sandoval C. Climate variability and Lutzomyia spinicrassa abundance in an area of cutaneous leishmaniasis transmission in Norte de Santander, Colombia. Int J Antimicrob Agents. 2009; 34: 0924-8579.

Galvis OF, Silva YRE, Fernandez N, Gutierrez R, Galati EAB, Sandoval CM. The sandfly fauna, anthropophily and the seasonal activities of Pintomyia spinicrassa (Diptera: Psychodidae: Phlebotominae) in a focus of cutaneous leishmaniasis in northeastern Colombia. Mem Inst Oswaldo Cruz. 2013; 108(3): 297-302.

Ximenes MFFM, Maciel JC, Jerônimo SMB. Characteristics of the biological cycle of Lutzomyia evandroi Costa Lima & Antunes, 1936 (Diptera: Psychodidae) under Experimental Conditions. Mem Inst Oswaldo Cruz. 2001; 96(6): 883-886.

Kasap OE, Alten B. Comparative demography of the sand fly Phlebotomus papatasi (Diptera: Psychodidae) at constant temperatures. J Vector Ecol. 2006; 31: 378-385.

Rivas GBS, Souza NA, Peixoto AA, Bruno RV. Effects of temperature and photoperiod on daily activity rhythms of Lutzomyia longipalpis (Diptera: Psychodidae). Parasites Vectors. 2014; 7, 278.

Benkova I, Volf P. Effect of temperature on metabolism of Phlebotomus papatasi (Diptera: Psychodidae). J Med Entomol. 2007; 44(1): 150-154.

Becker I, Carrada-Figueroa G, Gudiño-Zayas M, González C, Berzunza-Cruz M, Rivas-Sánchez B, et al. Análisis de la leishmaniasis en México. Consulta de expertos OPS/OMS sobre la leishmaniasis visceral en las Américas. Informe Final. Brasilia, Brazil. November 23-25. 2005.

Sánchez-García L, Berzunza-Cruz M, Becker-Fauser I, Rebollar-Téllez EA. Sand flies naturally infected by Leishmania (L.) mexicana in the peri-urban area of Chetumal city, Quintana Roo, México. Trans R Soc Trop Med Hyg. 2010; 104: 406-411.

Instituto de Diagnóstico y Referencia Epidemiológicos. Leishmaniasis en México. [on line], http://www.indre.salud.gob.mx/interior/leishmaniasis_en_mexico.html. 2012, (Accessed on September, 2014).

Rodriguez-Rojas JJ, Rodriguez-Moreno A, Berzunza-Cruz M, Gutierrez-Granados G, Becker I, Sanchez-Cordero V, et al. Ecology of phlebotominae sandflies and putative reservoirs hosts of leishmaniasis in a border area in Northeastern Mexico: implications for the risk of transmission of Leishmania mexicana in Mexico and the USA. Parasites. 2017; 24: 33.

Monroy-Ostria A, Sánchez-Tejeda G. Survey of cutaneous leishmaniasis in Mexico: Leishmania species, clinical expressions and risk factors. En: Claborn D (Ed.). The epidemiology and ecology of leishmaniasis, InTech. 2017; 153-165.

Andrade-Narváez FJ, Albertos-Alpuche NE, Canto-Lara SB, Vargas-González A, Valencia-Pacheco G, Palomo-Cetina A. Risk factors associated with CL infection and disease in the State of Campeche, Yucatan Peninsula. En: Wijeyaratne P, Goodman T (Eds.), Leishmaniasis Control Strategies. A Critical Evaluation of IDRC-supported Research, International Development Research Center MR 322e. 1992; 193-205.

Andrade-Narváez FJ, Simmonds-Díaz EB, Aguilar-Rico S, Andrade-Narváez M, Palomo-Cetina A, Canto-Lara SB, et al. Incidence of localized cutaneous leishmaniasis (Chiclero's ulcer) in Mexico. Trans R Soc Trop Med Hyg. 1990; 84: 219-220.

Ibáñez-Bernal S, Durán-Luz J. An actualized catalogue of the Psychodidae (Diptera) of Mexico and their known distribution by state. Zootaxa. 2022; 5104 (3): 347-408.

Walters LL, Irons KP, Chaplin G, Tesh RB. Life cycle of Leishmania major (Kinetoplastida: Trypanosomatidae) in the neotropical sand fly Lutzomyia longipalpis (Diptera:Psychodidae). J Med Entomol. 1993; 30: 699-718.

Claborn DM, Rowton ED, Lawyer PG, Brown GC, Keep LW. Species diversity and relative abundance of phlebotomine sand flies (Diptera: Psychodidae) on three Army installations in the southern United States and susceptibility of a domestic sand fly to infection with Old World Leishmania major. Military Medicine. 2009; 174: 1203-1208.

González C, Rebollar-Téllez EA, Ibáñez-Bernal S, Becker-Fauser I, Martínez-Meyer E, Peterson AT, et al. Current knowledge of Leishmania vectors in Mexico: how geographic distributions of species relateto transmission areas. Am J Trop Med Hyg. 2011; 85: 839-846.

Centro Nacional de Programas Preventivos y Control de Enfermedades. Prevención y control de las leishmaniasis, Programa sectorial de salud 2013-2018. 2014. Mexico, D.F. pp. 68.

Qiao H, Soberón J, Peterson AT. No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods Ecol Evol. 2015; 6: 1126-1136.

Rebêlo JMM. Episódios do El Niño e a distribuição temporal de calazar na Ilha de São Luís, Maranhão, Brasil. Cadernos de Saúde Pública. 2008; 24: 1713-1714.

da Silva AS, Andreoli RV, de Souza RAF, Chagas ÉCDS, de Moraes DS, de Figueiredo RC, et al. Impact of El Niño on the dynamics of American cutaneous leishmaniasis in a municipality in the western Amazon. Acta Trop. 2021; 222: 106032.

Thompson RA, Lima JWO, Maguire JH, Braud DH, Scholl DT. Climatic and demographic determinants of American visceral leishmaniasis in Northeastern Brazil using remote sensing technology for environmental categorization of rain and region influences on leishmaniasis. Am J Trop Med Hyg. 2002; 67(6): 648-655.

Viana GMC, Nascimento MDSB, Rabelo ÉMF, Neto JAD, Júnior JRB, Galvão CS, Santos AC, et al. Relationship between rainfall and temperature: observations on the cases of visceral leishmaniasis in São Luis Island, State of Maranhão, Brazil. Rev Soc Bras Med Trop. 2011; 44(6):722-724.

Rodriguez-Morales AJ, Herrera-Giraldo AC, Botero S, Dib JC. P244 Potential impacts of climate change and variability on cutaneous leishmaniasis epidemiology in Risaralda and Magdalena, Colombia, 1985–2002. Int J Antimicrob Agents. 2013; 42: S119.

Valderrama-Ardila C, Alexander N, Ferro C, Cadena H, Marin D, Holford TR, et al. Environmental risk factors for the incidence of american cutaneous leishmaniasis in a Sub-Andean Zone of Colombia (Chaparral, Tolima). Am J Trop Med Hyg. 2010; 82: 243-250.

Chaves LF, Cohen JM, Pascual M, Wilson ML. Social Exclusion Modifies Climate and Deforestation Impacts on a Vector-Borne Disease. PLoS Negl Trop Dis. 2008; 2; e176.

Chaves LF. Climate and recruitment limitation of hosts: the dynamics of American cutaneous leishmaniasis seen through semi-mechanistic seasonal models, Ann Trop Med Parasitol. 2009; 103: 221-234.

Aversi-Ferreira RA, Galvão JD, Silva SD, Cavalcante GF, Silva EV, Bhatia-Dey N, et al. Geographical and Environmental Variables of Leishmaniasis Transmission. In (Ed.), Leishmaniasis - Trends in Epidemiology, Diagnosis and Treatment. IntechOpen. 2014; https://doi.org/10.5772/57546.

Palatnik-de-Sousa CB, Day MJ. One Health: The global challenge of epidemic and endemic leishmaniasis. Parasites Vectors. 2011; 4: 197.

Rajesh K, Sanjay K. Change in global climate and prevalence of visceral Leishmaniasis. Int J Sci Res. 2013; 3(1): 1-2.

Pigott DM, Bhatt S, Golding N, Duda KA, Battle KE, Brady OJ, et al. Global distribution maps of the leishmaniases. eLife. 2014; 3: 1-21.

Findlater A. Climate variability and leishmaniasis in Peru: an exploratory analysis of surveillance data. Thesis. 71 p. Degree of Master of Science in Epidemiology. Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal. 2011.

Rodriguez-Morales AJ, Rada L, Blanco JJ, Cabaniel G, Escalera JP. Climate and cutaneous leishmaniasis in Venezuela. 2005; Poster Session: Tropical/Travel Medicine.

Michalsky ÉM, Fortes-Dias CL, França-Silva JC, Rocha MF, Barata RA, Dias ES. Association of Lutzomyia longipalpis (Diptera: Psychodidae) population density with climate variables in Montes Claros, an area of American visceral leishmaniasis transmission in the state of Minas Gerais, Brazil. Mem Inst Oswaldo Cruz. 2009; 104; 1191-1193.

Nieves E, Oraá L, Rondón Y, Sánchez M, Sánchez Y, Rujano M, et al. Distribution of vector sandflies leishmaniasis from an endemic area of Venezuela. J Trop Dis. 2015; 3: 157.

Peterson AT, Campbell LP, Moo-Llanes DA, Travi B, Gonzalez C, Ferro MC, et al. Influences of climate change on the potential distribution of Lutzomyia longipalpis sensu lato (Psychodidae: Phlebotominae). Int J Parasitol. 2017; 47: 667-674.

Altamiranda-Saavedra M, Gutiérrez JD, Araque A, Valencia-Mazo JD, Gutiérrez R, Martínez-Vega RA. Effect of El Niño Southern Oscillation cycle on the potential distribution of cutaneous leishmaniasis vector species in Colombia. PLoS Negl Trop Dis. 2020; 14: e0008324.

Ready PD. Leishmaniasis emergence and climate change. Rev Sci Tech - Int Off Epizoot. 2008; 27: 399-412.

Enlaces refback

  • No hay ningún enlace refback.